Enhanced luminescence of Au22(SG)18 nanoclusters via rational surface engineering.
نویسندگان
چکیده
We report design strategies for the preparation of highly luminescent Au22(SG)18 clusters, where SG is glutathione, by the functionalization of the cluster shell. In these strategies, the cluster shell was covalently modified with small aromatic molecules and pyrene chromophores that led to a 5-fold PL enhancement by rigidifying the shell-gold. Highly luminescent water-soluble gold clusters with a PL quantum yield of 30% were obtained at room temperature. To further enhance the luminescence, the pyrene chromophores in the functionalized Au22 clusters were photoexcited at 350 nm to induce energy transfer from pyrene to the Au22 cluster. Steady-state and time-resolved PL measurements have shown evidence of enhanced rigidity with increased PL lifetimes for the functionalized Au22 clusters. However, the energy transfer efficiency was found to be only 14% because of the competing electron transfer deactivation pathway as evidenced by the formation of the pyrene anion radical revealed in the ultrafast transient absorption measurements. To suppress the electron transfer pathway, the pyrene functionalized Au22 clusters were ion-paired with tetraoctylammonium (TOA) cations that could break the electron transfer pathway, leading to a dramatic 37-fold increase in PL brightness with the resonance energy transfer efficiency of ca. 80%. This work presents effective design strategies for the preparation of highly luminescent gold clusters by the combination of rigidifying effect and energy transfer sensitization.
منابع مشابه
Water-soluble Au25(Capt)18 nanoclusters: synthesis, thermal stability, and optical properties.
This work was motivated by the unsatisfactory stability of Au(25)(SG)(18) in solution under thermal conditions (e.g. 70-90 °C for DNA melting). Thus, we searched for a better, water-soluble thiol ligand. Herein, we report a one-pot synthesis and investigation of the stability and optical properties of captopril (abbreviated Capt)-protected Au(25)(Capt)(18) nanoclusters. The Au(25)(Capt)(18) (an...
متن کاملThe tetrahedral structure and luminescence properties of Bi-metallic Pt1Ag28(SR)18(PPh3)4 nanocluster.
The atomic-structure characterization of alloy nanoclusters (NCs) remains challenging but is crucial in order to understand the synergism and develop new applications based upon the distinct properties of alloy NCs. Herein, we report the synthesis and X-ray crystal structure of the Pt1Ag28(S-Adm)18(PPh3)4 nanocluster with a tetrahedral shape. Pt1Ag28 was synthesized by reacting Pt1Ag24(SPhMe2)1...
متن کاملDiphosphine-Protected Au22 Nanoclusters on Oxide Supports Are Active for Gas-Phase Catalysis without Ligand Removal.
Investigation of atomically precise Au nanoclusters provides a route to understand the roles of coordination, size, and ligand effects on Au catalysis. Herein, we explored the catalytic behavior of a newly synthesized Au22(L8)6 nanocluster (L = 1,8-bis(diphenylphosphino) octane) with in situ uncoordinated Au sites supported on TiO2, CeO2, and Al2O3. Stability of the supported Au22 nanoclusters ...
متن کاملPolymorphism of Phosphine-Protected Gold Nanoclusters: Synthesis and Characterization of a New 22-Gold-Atom Cluster.
A new Au22 nanocluster, protected by bis(2-diphenyl-phosphino)ethyl ether (dppee or C28 H28 OP2 ) ligand, has been synthsized and purified with high yield. Electrospray mass spectrometry shows that the new cluster has a formula of Au22 (dppee)7 , containing 22 gold atoms and seven dppee ligands. The cluster is found to be stable as a solid, but metastable in solution. The new cluster has been c...
متن کاملBoiling water synthesis of ultrastable thiolated silver nanoclusters with aggregation-induced emission.
A facile boiling water synthesis protocol has been developed to synthesize thiolated Ag nanoclusters with a core-shell Ag(0)@Ag(i)-thiolate structure, which was formed through condensation of Ag(i)-thiolate complexes on the surface of an in situ formed Ag(0) core. The as-synthesized thiolated Ag nanoclusters feature strong luminescence via aggregation-induced-emission (AIE).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 8 48 شماره
صفحات -
تاریخ انتشار 2016